Algebraic Geometry Lecture 27 – Complex Multiplication of Abelian Varieties

Andrew Potter

§1 Abelian Varieties over \mathbb{C}

An abelian variety is a projective variety with a group structure.

Recall, an elliptic curve E over \mathbb{C} is isomorphic to a complex torus \mathbb{C}/Λ for some lattice Λ . Something similar is true for abelian varieties, i.e. $A(\mathbb{C}) \cong \mathbb{C}^d/\Lambda$ for some $d = \dim A$ and some full lattice Λ in \mathbb{C}^d .

We will study the endomorphism ring $\operatorname{End}(A)$, but a more natural object to consider is $\operatorname{End}^{0}(A) = \operatorname{End}(A) \otimes \mathbb{Q}$, which makes it into a \mathbb{Q} -algebra.

§2 CM-Fields and Complex Multiplication

Definition. An algebraic number field E is a CM-field if it is a totally imaginary quadratic extension of a totally real field.

Example. The cyclotomic field $\mathbb{Q}(\zeta_n)$ where ζ_n is a primitive *n*th root of unity is a CM-field. It is a quadratic imaginary extension of $\mathbb{Q}(\zeta_n + \zeta_n^{-1})$.

Definition. An abelian variety (over \mathbb{C}), A, is said to have complex multiplication by a CM-field E if:

•
$$E \subset \operatorname{End}^0(A)$$
,

• $[E:\mathbb{Q}]=2\dim A.$

We'll show how to construct all abelian varieties that have complex multiplication by a given CM-field.

Let $[E:\mathbb{Q}] = 2d$. We can do this since E is a quadratic extension of something. The embeddings $E \hookrightarrow \mathbb{C}$ fall into complex conjugate pairs $(\phi, \overline{\phi})$. Define a CM-type to be a choice of d embeddings, no two of which differ by complex conjugation. Write $\Phi = \{\phi_1, \ldots, \phi_d\}$ for a CM-type. Let Φ also denote the map $\Phi: E \to \mathbb{C}^d$ given by

$$\Phi: x \mapsto (\phi_1(x), \dots, \phi_d(x)).$$

Define $A = \mathbb{C}^d / \Phi(\mathcal{O}_E)$. This is a complex torus, hence an abelian variety. It has CM by E, since any $x \in \mathcal{O}_E$ gives rise to an endomorphism $\Phi(x)$ on A.

§3 Abelian Varieties over Finite Fields

Abelian varieties over \mathbb{F}_q are important in the study of zeta functions. An abelian variety over \mathbb{F}_q has a Frobenius endomorphism π_A , which commutes with all other endomorphisms, so it lies in the centre of $\operatorname{End}^0(A)$. In fact, if A is simple then $\operatorname{End}^0(A)$ is a division algebra, so $\mathbb{Q}(\pi_A)$ is a field.

Definition. A Weil q-integer is an algebraic integer π such that $|\pi| = q^{1/2}$. We say two Weil q-integers are conjugate and write $\pi \sim \pi'$ if and only if one of the following equivalent conditions holds:

- π and π' have the same minimal polynomial over \mathbb{Q} ;
- there exists an isomorphism $\mathbb{Q}(\pi) \cong \mathbb{Q}(\pi')$;
- π and π' lie in the same orbit under the action of $\operatorname{Gal}(\overline{\mathbb{Q}}/\mathbb{Q})$.

We denote the set of all Weil q-integers as W(q).

Theorem (Honda–Tate). The map taking $A \to \pi_A$ defines a bijection between the sets

 $\{ simple \ abelian \ varieties \ over \ \mathbb{F}_q \ up \ to \ isogeny \} \quad \longleftrightarrow \quad W(q)/\sim.$