Algebraic Geometry Lecture 27 - Complex Multiplication of Abelian Varieties
 Andrew Potter

§1 Abelian Varieties over \mathbb{C}

An abelian variety is a projective variety with a group structure.
Recall, an elliptic curve E over \mathbb{C} is isomorphic to a complex torus \mathbb{C} / Λ for some lattice Λ. Something similar is true for abelian varieties, i.e. $A(\mathbb{C}) \cong \mathbb{C}^{d} / \Lambda$ for some $d=\operatorname{dim} A$ and some full lattice Λ in \mathbb{C}^{d}.

We will study the endomorphism ring $\operatorname{End}(A)$, but a more natural object to consider is $\operatorname{End}^{0}(A)=$ $\operatorname{End}(A) \otimes \mathbb{Q}$, which makes it into a \mathbb{Q}-algebra.

§2 CM-Fields and Complex Multiplication

Definition. An algebraic number field E is a CM-field if it is a totally imaginary quadratic extension of a totally real field.

Example. The cyclotomic field $\mathbb{Q}\left(\zeta_{n}\right)$ where ζ_{n} is a primitive nth root of unity is a CM-field. It is a quadratic imaginary extension of $\mathbb{Q}\left(\zeta_{n}+\zeta_{n}^{-1}\right)$.
Definition. An abelian variety (over \mathbb{C}), A, is said to have complex multiplication by a CM-field E if:

- $E \subset \operatorname{End}^{0}(A)$,
- $[E: \mathbb{Q}]=2 \operatorname{dim} A$.

We'll show how to construct all abelian varieties that have complex multiplication by a given CM-field.

Let $[E: \mathbb{Q}]=2 d$. We can do this since E is a quadratic extension of something. The embeddings $E \hookrightarrow \mathbb{C}$ fall into complex conjugate pairs $(\phi, \bar{\phi})$. Define a CM-type to be a choice of d embeddings, no two of which differ by complex conjugation. Write $\Phi=\left\{\phi_{1}, \ldots, \phi_{d}\right\}$ for a CM-type. Let Φ also denote the map $\Phi: E \rightarrow \mathbb{C}^{d}$ given by

$$
\Phi: x \mapsto\left(\phi_{1}(x), \ldots, \phi_{d}(x)\right)
$$

Define $A=\mathbb{C}^{d} / \Phi\left(\mathcal{O}_{E}\right)$. This is a complex torus, hence an abelian variety. It has CM by E, since any $x \in \mathcal{O}_{E}$ gives rise to an endomorphism $\Phi(x)$ on A.

§3 Abelian Varieties over Finite Fields

Abelian varieties over \mathbb{F}_{q} are important in the study of zeta functions. An abelian variety over \mathbb{F}_{q} has a Frobenius endomorphism π_{A}, which commutes with all other endomorphisms, so it lies in the centre of $\operatorname{End}^{0}(A)$. In fact, if A is simple then $\operatorname{End}^{0}(A)$ is a division algebra, so $\mathbb{Q}\left(\pi_{A}\right)$ is a field.

Definition. A Weil q-integer is an algebraic integer π such that $|\pi|=q^{1 / 2}$. We say two Weil q-integers are conjugate and write $\pi \sim \pi^{\prime}$ if and only if one of the following equivalent conditions holds:

- π and π^{\prime} have the same minimal polynomial over \mathbb{Q};
- there exists an isomorphism $\mathbb{Q}(\pi) \cong \mathbb{Q}\left(\pi^{\prime}\right)$;
- π and π^{\prime} lie in the same orbit under the action of $\operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q})$.

We denote the set of all Weil q-integers as $W(q)$.
Theorem (Honda-Tate). The map taking $A \rightarrow \pi_{A}$ defines a bijection between the sets $\left\{\right.$ simple abelian varieties over \mathbb{F}_{q} up to isogeny $\} \quad \longleftrightarrow W(q) / \sim$.

